ANVILOY®

TUNGSTEN HEAVY ALLOYS Product card

ANVILOY Tungsten Heavy Alloys are versatile materials with a wide range of valuable characteristics. They are often used for many different purposes, such as radiation shielding, high-stiffness, and mass property uses.

ANVILOY® Tungsten Heavy Alloys are highly ductile when given the correct post-sintering heat treatment. ANVILOY® Tungsten Heavy Alloys are perfectly capable of surpassing the ideal minimum values of known standards. They may also be used for cold working processes that require higher strength and hardness levels.

ANVILO	® Grades	170F	175F	180F	185F	170C	175C	180C
Density/Composition Classification	AMS 7725E	CL 1/Type 2	CL 2/Type 2	CL 3/Type 2	CL 4/Type 2	CL 1/Type 1	CL 2/Type 1	CL 3/Type 1
	ASTM B777-15	Class 1	Class 2	Class 3	Class 4	Class 1	Class 2	Class 3
Tensile Properties, Typ. (as-sintered state)	UTS ksi	125	125	125	130	110	110	110
	0.2% OYS ksi	83	85	90	95	80	80	80
	EL, minimal %	5	5	3	2	2	2	1
Magnetic Permeability	ASTM A342	>1.05	>1.05	>1.05	>1.05	<1.01	<1.01	<1.01
Density, Nominal	g/cc	17.0	17.5	18.0	18.5	17.0	17.5	18
	lb/in³	.614	.632	.650	.669	.614	.632	.650
Hardness, Typical	HRC	28	28	29	30	28	28	29
W Content, Nominal	% by weight	90	92.5	95	97	90	92.5	95
Modulus, Nominal	X10 ⁶ psi	50	52	54	56	50	52	54
Binder Elements		Ni & Fe	Ni & Fe	Ni & Fe	Ni & Fe	Ni & Cu	Ni & Cu	Ni & Cu

The above table describes alloy characteristics, including minimum values for elongation. It should be noted that mechanical properties of alloys will differ depending on size, and that a number of additional processing options may exist outside of the information below.

To achieve the best results, one must carefully pick the right alloy. Start with the information listed below to find the best alloy for the job. Also note that better density, radiation, attenuation, and elastic modulus come at the cost of high ductility and toughness. Always examine mechanical requirements before choosing an alloy, and remember that mechanical requirements are strain-rate sensitive.

GRADES	CHARACTERISTICS	APPLICATIONS		
170F	 High ductility High formability Stress service High in-crack resistance Can be press-formed or rolled into different shapes Over twice as dense as steel 	Radiation Shielding Components Balance Weights for Aerospace & Motorsport Applications		
175F	Balanced densityBalanced rigidityDurable	 High stiffness & long extension tooling Mobile radiation shielding - damage resistant & high radiation attenuation Defense applications 		
180F	Excellent radiation attenuationWithstands rigorous handling & impact	Mobile radiation shieldingGreat for small, precision machined balance weights		
185F	 High maximum limit for W in tungsten heavy alloys before ductility becomes limited Strongest radiation shielding potential out of all dense alloys 	High density applications Fixed radiation shielding - low stress impact		
170C	Greatest ductility of any low permeability or nonmagnetic grades	X-ray shielding around electron optics Uses requiring minimal distortion of local magnetic field geometry Horizontal oil & gas drilling applications		
175C	 Intermediate W content Good balance between density & mechanical properties in a low permeability grade Low magnetic permeability 	 Aerospace & Defense Counterweights Medical & Industrial Radiation Shielding Forming Punches and High-Load Wear Components 		
180C	 High density Non-magnetic Lower ferromagnetic response than most stainless steels (~1.01) 	 High-Energy Radiation Shielding (Medical & Nuclear) Kinetic Energy Penetrators & Ballistic Applications Critical Balance Weights in Aerospace & Rotor Systems X-Ray Target Rotors & High-Temperature Vacuum Components 		

Americas Europe, Asia, Australia

Contact: <u>Jim Bro</u>wn

Weldstone Americas, LLC 6901 Bryan Dairy Road, Suite 110 Largo, FL 33777, USA

Mob.:+1 727-295-6989 Tel.: +1 727-546-9600 Fax: +1 727-546-9699

E-Mail: jim.brown@weldstone.net Internet: www.anviloy.com

ANVILOY®

WWW.ANVILOY.COM

Contact: Andreas Endemann, Thomas Hoehn

> Weldstone Components GmbH Am Ruebgarten 2 D-57299 Burbach Germany

Tel.: +49 8031-94 13 99-0 Fax: +49 8031-94 13 99-09 E-Mail: hello@weldstone.com Internet: www.weldstone.com